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Nomenclature

English letters

a

c

D

f

i

L

t

½
N,V

W

×,y

= indicates air

= chord length

= drop

= subscript, denotes fog or vapor state

= subscript, denotes incident

= characteristic length
= time

= free stream velocity

= velocity components along x-y-directions respectively

= subscript, denotes water

= physical coordinates

Greek letters

p =

Pv =

pl =

19 ----

= angle of attack, or non-dimensional ration_ = Wl.tp
droplet incident angle

density of the fluid

density of the vapor

density of the liquid

= coefficient of viscosity

thickness of the boundary layers

kinematic coefficient of viscosity = I_/p

W
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SUMMARY

A mathematical model for a two-phase flow laminar airfoil in simulated heavy
rain has been established.

The set of non-linear partial differential equations has been converted into a set

of finit6 differefice equations; appropriate initial and boundary conditions are

provided. The numerical results are compared with the experimental

measurements. They show good agreement in quality.

I. INTRODUCTION

This paper investigates the rain effects to the airfoil during landing and take-off.

When the heavy rain hits the _irfoil, the fine water drops near to the wing surface

form a liquid film while the water vapor above the wing surface establishes a

gaseous fog. The former is in liquid state, the latter is in gaseous state. This is the so-

called two-phase phenomenon. The thin liquid film close to the wing surface

usually forms a laminar boundary layer. However, the heavy rain fall may cause a

premature turbulent boundary layer. That is, the heavy rain effects may cause the

laminar boundary layer transit into turbulent boundary layer. As a result, the lift is

appreciably decreased, while the drag is considerably increased. In a a more serious

situation, the decrease in lift and increase in drag may develop into wind shear

which causes an airplane catastrophe involving loss of human life and property

damage. This important knowledge should keep the pilot well-informed as a

precaution of flight safety. A variety of experimental and analytic methods used to

investigate the heavy rain effects on airfoil may be referred to in previous works,

notably references # 1 through # 13. This paper has established a mathematical

model for the airfoil under the simulated heavy rain. The said mathematical model

consists of a set of non-linear partial differential equations for which a numerical

solution has been obtained. A comparison between theory and experiment has been

made and will shed some light on flight safety.

II. FORMULATION

As in the following figure, the two-phase-flow around an airfoil is clearly
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described. To simplify the problem the following assumptions are made:

1. The fluid flow is non-steady, viscous, and incompressible.
2. There is laminar boundary in the flow region.
3. The airfoil is represented by a flat plate. The physical coordinates are shown

in Figure (2).
c

For a _vo-dimensional, nonsteady two-phase flow, we obtain the following

sets of fundamental equations under boundary layer approximation: For the hquid

phase

Equation of Continuity: Ou +3v = _ v, sinf3 ...... (1)
3x 8y p. 8

Equation of

N.oment:llm :

u3U+v3U = /t 82u W_V_ sin_cos[3 ...... (2)

+ 3x 3y Pw 3Y 2 p,,,8

Film thickness: 8 = 5_/_0x / U 2

c)u "_3V

For the fog phase Equation of Continuity: _ + x" = 0
oy

Equation of Momentum:
3u 3u 3u _t 32u

3"¢ U_'x 0y pc 3y 2

The initial conditions are:

(3)

(4)

(5)

at t = 0, u =U (x,O), V = 0,3 = 0
2

The boundary conditions are:

y = 0, for the liquid phase

u = 0, v = 0 (no slip condition)

at y -- 8 (liquid-fog interface)

(u)1=(u)f (v)1=(v)f

(6)

(7)

(8)
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In other words, LI, V, and 3u/3y for both liquid and fog must be compatible at the

interface, as y --_ (for the fog phase) , u - U(x,t) ...... (9)

HI. NON-DIMENSIONALIZATION

In order to non-dimensionalize theset of f_damental equations, w e

introduce the foii0w_g: .............

_ x _ y _ u - v
x=-- y=-- u=_ v=_

L L U¢ U¢ ......
8 U_T -- V_

L LI_

(IO)

where Uc is the reference velocity, and L is the chord length of the airfoil.

Substituting the above relations into Equations (1), (2), (3), (4) and (5), and omitting
the bar notations, we obtain:

au av = _ v, sin_ (11)
_x + 0y pw T ......

3u 3u 3u 1 32u + W, V_sin_cos_
+u_ + v_ = .(RN), ay= p_ 5 (12)

6 = / L ...... 03)

In Equ. (i2), W1 has the dimension of M/L 3, so does the density p. W1/Pw is a

non-dimensional quantity, where (RN)I = pwU2x/_ Reynolds number of the liquid

water. We let a -- W1/Pw = non-dimensional ratio of the liquid water content to the

water density.

For the fog phase

Equation of Continuity:

_u _v

3x + ay = 0 ...... (14)

Equation of momentum
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3u 3u 3u 1 32u

+ + = (RN), ......
(15)

where (RN), = _ -- Reynolds number of the tog.

The corresponding initial and boundary conditions are:

at I:= O, u= U(x,o), V = 0

8=0

(6.a)

for the liquid phase, at y = 0, u = v=o (No slip condition) .... ... (7.a)

at y = 8/L (Liquid-vapor interface)

(u), = (u), (V), = (V),

(8.a)

As y _ _ u = U(x,'¢) ...... (9.a)

IV. FINITE DIFFERENCE EQUATIONS

The previously derived set of non-dimensionai partial differential equations can

be transformed into the finite difference equations in the following manner: An

explicit method is used. Let U', V' and 5' denote the values of U, V and _ at the

end of a time-step. Then the appropriate sets of finite difference equations are:

For the liquid

Equation of Continuity:
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Ay 8,,I ......

Equation of Momentum:

' - (U,.,-U.)u4- u_+u.(_. _" )+ v.
A_ ax ay

(11.a)

1
Z m

(e,N), (ay)' _ _i' sin_cos_ ......
(12.a)

Film H'dck_ess:

= 5
• V U2

For the fog

Equation of Continuity:

i o o • o • . (13.a)

Z

w

U_i- U,_,, V;'i - _.j_,
Ax Ay

o ° o o o o (14.a)

Equation of Momentum:

Uiol- Uj.j +U,j (U,j- U,=,. I ) + V,i
A,= • Ax •

(Ui.i*1- Ui.j)

Ay

_ I (u,.i.,-2u,.j+ u,.j_,)

(_), (Ay)_

The boundary conditions are

at _=0, u=U2, v=O

(15. a)

(16)
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for the liquid phase, y = 0, U=V=0. " ..... (17) • At the interface 0 < x < L, O < y

y < 8max • We choose integers Mx and My such that

(v.,),= (v_), (v_._),=(v.._),

(v,),=(v_l, (v,..,),=(v_.,),

(Uo.,),=(Uo.,),(uM..j),=(uM..,),-_.........

(U,.o),=(:_,.o),(_,._,),=(:_,..,)I

(16.a)

(16.b)

All the points denoted by Equations (16.a) and (16.b) are boundary points at which

thevalues of U and V are already known. Furthermore the shearing force of the

interface is denoted by the following relation

, - i. j __ J ...... (17.a)

_Y z_y

1
V. THE STABILITY OF THE FINITE-DIFFERENCE E_UATIONS

Since an explicit procedure is used, we wish to know the largest time-step

consistent with stability. Equation of continuity is ignored since A'¢ does not appear

in it. The general terms of the Fourier expansion for U at a time arbitrarily called

_--0 are both e lax ei[3y, apart from a constant (Here i = _f2"i'). At a time _ later, these
terms will become

U: _I/(_)ei='ei°y

Substituting the above into Equation (12.a),regarding the coefficientsU and V as

constants over any one step, and denoting the values after time-step by _' gives

• '-_. + u_[1-_] + v_[_'_'-q
A'¢ Ax Ay

1 2V(z)[cos(f_ay)- 11

RN (ay)_
O_

+< Vi_ sin_cos_e-'(=+0y) (18)
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Through a very tedious algebraic manipulation, there obtains the criterion of

stability:

U fix V Ax + 2Ax < 1 ......... (19)
Ax Ay _(ay) 2

Inthe present research, RN ,the Reynolds number, is in the order of 106.

Equation (19) follows automatically. However, the coefficients U and V, treated as

constants over any one time-step, will vary from one time-step to the next in a

manner which cannot be predicted as a priori. That is the maximum permissible

time-step consistent with stability and is itself variable, but its value can always be

checked during computation if necessary.

VI. CALCULATION OF LIFT COEFFICIENT

According to Glauert, the lift coefficient is given by

CL = =(c¢.+Eo) (20)

where d is the angle of attack,

XdX

and f (x/c) m i ...... (22)

I "77"(i-e-_-)Jx x)c (1- c

The relationship between (x/c) and f (x/c) is :

(x/c) 0.025 0.05 0.I0 0.20 0.30 0.40

fl(x/c) 2.090 1.54 1.18 1.00 0.99 1.08

(x/c) 0.50 0.60 0.70 0.80 0.90 0.95

fl(x/c) 1.27 1.62 2.31 3.98 10.60 29.20

For Wortrnann airfoil, the value of (y/c) for each (x/c) can be found. The

integration can be performed easily. However, for flat plate airfoil, ao = O, the lift

coefficent reduces to CL = _o_.
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VII. CALCLK_TION OF DRAG COEFFICIENT

A body of buff form, particularly if it has sharp edges like a fiat plate (which is

the case here) will shed strong vortices and wiI1 have a large form drag. As a first

approximation, the form drag coefficient may be written

CD = 2"83Ih)'U = 0"281 K--bV ... ... (23)

where K = 2_2 a U, is the strength of each point vertex, the so- called Karman vortex

street, a is the distance separating the successive vortices of each row, U is the

induced velocity, h is the distance between the two rows, i.e. the breadth of the
street. A sketch for yon Karman vortex street is given as follow s :

L__A1
l-

"rj 

a -i _-A2 A3a '

B1 2

Two Vortex Rows

h

V
r

Von Karman Vortex

I
h

I

Street

Figure (3).
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The skin fricffional drag coeffi=ient of a flat plate is given by a

classical formula:

Cd- 1.328_--_ ...... (24)

_e histor_cal-re,Uits and che-:_r_n_ _u=_t_-are_abula_ as i_g_iows :

Reynolds No.

Experimental

Measurement

Karman

Blasius

Current

Computation

4
1.14xi0

0.0124

(Dry)

4
O. 57xlO

0.0176

(Wet)

5
3xlO

0.0057

0.0058

0.0024

6
I0

0. 0047

0.0045

o.qo13

6
7x10

0.0035

0.0031

0.0005

As Shown in the above table, the drag coefficient of the airfoil with

rain is higher than that without rain. The computed results are much

lower than those measured by Hansman(in references 5,and 6).The reason for

this is that the over-simpll-fied mathematical model of an airfoil by a flat

plate does not cover the physical reality of a true airfoil which has proper

thickness and suitable chord length.

Also the premature transition of laminar flow into turbulent flow may

cause higher drag coefficient . This possible turbulent phenomenon is not

covered due to our previous assumptions.

The superposition of form drag to the skin frictional drag should improve

the agreement in quantity with the experimental measurement. However, the

analytic determination of form drag in Eq.(23) remains to be a difficul_

task for further investigation.
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VIII Condusion and Discussion

The set of finite difference equations has been converted into Fortran language,

and a numerical solution is obtained. The complexity and computation time are far

beyond the investigator's anticipation. For the numerical results it was found that

there is. decrease in lift and increase in drag due to the heavy rain effects. The reason

for this is that the heavy rain causes roughness on the wet surface of the airfoil. A

comparison of the present numerical calculation with Hansman's (6) experimental

measurement is shown in Figure (5). According to Hansman, the Wortmann

section had the greatest lift degradation: nearly 25%. The computed decrease in lift

and increase in drag are both lower than that of the experimental measurements.

The reason may be that the over-simplified mathematical model could not cover

the physical reality, such as the premature boundary layer transition near the

leading edge of the airfoil and the three-dimensional effects.

The laminar layer thickness of both the liquid film and fog is shown in Figure

(6). The velocity profile near the surface of the airfoil is shown in Figure (4). It is

evident that the U-component of the velocity near the surface of the airfoil is
decreased due to the rain-effects.

It requires further investigation for a turbulence model and three-dimensional

wing in order to accomplish perfect agreement between analytical investigation and
experimental measurements.
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Figure (6). X-chordwise Length.
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Figure (2). Physical Coordinates of Boundary Layer.
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